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J.  Phys. A: Math. Gen. 17 (1984) L9-Ll4. Printed in Great Britain 

LE'iTER TO THE EDITOR 

Statistics of the true sei€-avoiding walk in one dimension 

R Rammal, J C Angles d'Auriac and A Benott 
Centre de Recherches sur les Trts Basses Tem@ratures, CNRS, BP 166 X, 38042 Grenoble 
Cedex, France 

Received 29 September 1983 

Abstract. Numerical results of a Monte Carlo study for the true self-avoiding walk in one 
dimension are presented. For any positive value of the strength parameter (O<g<a) ,  
the root-mean-square displacement RN and the range SN of the walk are characterised 
by two universal exponents U =3*0.003 and s =$*0.01 respectively. For negative g 
(self-attracting walk) both RN and S, exhibit a saturation effect: limN+, R N  = R,(g)  and 
limN,, SN = S,(g) with R,(g) - (-g)-' and S&) - (-g)-' at g< 0. A simple scaling 
analysis in N and g is proposed and found to be consistent with the Monte Carlo results. 

Recently Amit et a1 (1983) have introduced a novel class of non-trivial correlated 
random walks on a lattice: the true self-avoiding walks (TSAW). They have introduced 
a self-avoidance parameter g and shown that the upper critical dimensionality for this 
problem is two ( d , = 2 ) ,  whereas it is four for the polymer problem (SAW) (see de 
Gennes 1979). Logarithmic corrections at d = 2 have been studied both numerically 
(Amit et a1 1983) and by E = 2 -  d expansions (Obukhov and Peliti 1983, Peliti 1983). 
Finally, a self-consistent argument (Pietronero 1983) has been formulated to compute 
d, and the exponent v of a TSAW. The result reproduces correctly d, = 2 and suggests 
a non-trivial value for v: v = 2 / ( 2  + d )  at d < d,. Of particular interest is the prediction 
of a non-diffusive behaviour, v = 3 at d = 1 for any finite value of the parameter g. 
The purpose of this letter is to present a brief report of a Monte Carlo study for the 
TSAW in one dimension, which permits us in particular to check this prediction. Two 
statistical properties are investigated for positive as well as for negative values of g :  
the root-mean-square (RMS) displacement RN and the average number of S ,  of distinct 
visited sites during N-step walks range. Illustrations are limited here to RN only. 
More detailed results, in particular for S,, will be reported elsewhere (Rammal et af 
1983). 

The TSAW problem in one dimension can be formulated as follows: a walker may 
move at each step to one of the two nearest neighbours of its current position. The 
(normalised) probability for moving from site i to i *  1 is given by 

W; ={l+exp[*g(ni+,- r ~ - ~ ) ] } - '  (1) 
where nj denotes the total number of previous visits of site j .  Three trivial limits of 
the TSAW in one dimension are respectively identified: g = 0, 00 and --CO. In the first 
case ( g = O )  we recover the standard random walk problem (RW),  where v = i .  The 
second case ( g  = -CO) corresponds to the SAW problem in one dimension, with v = 1. 
In the last case ( g  = -CO), the walker oscillates indefinitely between the first two visited 
sites. For other values of g we have a non-trivial stochastic process with infinitely 
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long memory. For g > 0 (resp g < 0) the walker is discouraged (resp encouraged) from 
stepping toward previously visited regions. The particular dependence (equation ( 1)) 
of W t  on Ini} is at the origin of non-trivial statistical properties of the TSAW. 

In figure 1 are shown the Monte Carlo results for R N  at different values of the 
repulsion parameter g. RN denotes here the RMS displacement at step N: R$ = (x’ , ) .  
All calculations were performed (in assembly language) on processors M 6502 and 
M 68000. Each set of points corresponds to an average over lo4- 2 X lo4 runs of 
N-step walks, up to N = 218. As can be seen, R N  crosses over from a RW behaviour 
at small g (resp SAW at g > > l )  for small N to a TSAW behaviour for larger N. The 
asymptotic slope converges towards a well defined value U, independent of g and very 
close to 5. From the best fit of data and using a plot enhancing eventual deviations 
from this value, we have obtained the following estimation for the exponent v: $* 0.003. 
This remarkable result, which differs from 3 only by a very small amount, provides 
strong support for the corresponding value predicted by the self-consistent argument. 
A similar behaviour was obtained for the range SN of the TSAW. A power law SN - N’ 
is reached asymptotically (N >> 1) in the same range of g values. The crossover observed 
for RN is also observed for S,. The estimated value of the exponent s is s = $*0.01, 
which supports an intuitive argument (see below) leading to the prediction s = v. 

I I I I I I 

I I I I 1 1 1 
0 2 4 6 8 10 12 

In N 

Figure 1. RMS displacement R ,  of the TSAW, for different values of the repulsion 
parameter: g S 10. For each value of g, an average over lo4- 2 x lo4 runs of up 
to N = 21R steps was performed. Broken lines correspond to g =CO (i.e. U = 1)  and g = 
0 ( Y = 4) respectively. Convergence towards a well defined exponent Y - 5 is clearly shown. 

Motivated by the symmetry property W: (g) = WT (-g), we have extended the 
above study to negative values of g. In the extreme limit g = - a  the TSAW reduces 
trivially to a simple oscillation between two sites. Such a self-trapping effect was shown 
to occur also for all other negative values of g.  This feature, leading to a saturation 
of R N  and SN as functions of N, has been checked by using enumeration methods as 
well as Monte Carlo calculation. By the former method, we have exactly calculated 
properties up to a given number of steps ( N  S 20) determined by limitations of 



Letter to the Editor L11 

computer time, for arbitrary values of g. The results behave sufficiently smoothly with 
N and g that the definition of R,(g) =limN+, RN(g)  and S&) = limN+m S N ( g )  is 
generally possible. To illustrate the results, we have shown, in figure 2, typical variations 
of RN as a function of N for different values of negative g, in the vicinity of g = 0. 
As expected R,(g) increases monotonically when g is increased from g = -CO to  g = 0. 
No special behaviour is associated with g=-oo, in contrast with the case g = W  
corresponding to the SAW. Both R,(g)  and S,(g) diverge at g=O, following an 
appropriate power law: R&) = (-g)-”’ and S&) = (-g)-”. The best fit of data, 
close to g = 0, leads to the following estimation for exponents: v r  = 0.98 +0.02 and 
s r  = 0.99 + 0.02 respectively. These values are to be compared with the predictions of 
the scaling analysis: v r  = sr = 1 (see below). It should be noted that errors in v r  and 
s’ estimations reflect the range of plateau levels and extrapolation procedure. 

rJ.-....r.--C-- 

- 0.009 

0 1oooo 
N 

Figure 2. Variation of RN against N, for different negative values of the strength parameter 
g in the vicinity of g = 0. An average over 4 X lo4 runs was performed for each value of g. 

The asymptotic properties of the TSAW are therefore very sensitive to the relative 
sign of the parameter g. In contrast with more simple choices for W’, the above one 
(equation (1)) leads to a remarkable phenomenon for g > 0 as for g < 0. The ‘self- 
attracting’ RW has received little study in the past. It is not clear for us to what extent 
the result obtained here is universal. Other behaviours, corresponding to other choices 
for W’, are also possible and cannot be excluded. Our results show the richness of 
the self-attracting RW and call for further work following similar lines of investigation. 

In what follows we will show that the main asymptotical properties of the TSAW 

can be analysed with the help of a simple scaling argument. From the work of Amit 
et a1 (1983), it is easy to show that, in a perturbation calculation around g = 0, the 
expansion parameter is g N 1 - d / Z  rather than g. For d = 1, this leads to a ‘virial expansion’ 
in the reduced parameter z = gN”’. The result for RN can be stated as follows: 

R ;  = Nc$(gN’/’) ( 2) 
where c$( z )  = 1 + a,z  + a2z2+. . . , and a, ,  a’ .  . . denote numerical factors. The validity 
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of equation (2) was proved by Amit et a1 (1983) up to second order in z. We assume 
here its validity at all orders in z. 

For g > 0, equation (2) shows that a Rw-to-mAw crossover takes place at N =r N* - 
g - 2 .  Assume the following behaviour of RN in the TSAW regime, 

RN a(g)N’ ,  (3) 
where a ( g )  is a prefactor which depends on the repulsion parameter g. Matching 
equation (3) with the RW regime at N -  N* ,  one obtains finally 

a ( g )  - g - .  (4) 

TSAW: gRN = (gN’’2)2u, RW: gRN = (gN’12). ( 5 )  

From (3), (4) we deduce the scaling law for R N :  

Stated otherwise, I$( z )  = R h  / N is a universal function of the scaling variable z 5 gN112, 
with the following limits: 

I $ ( Z ) = l + a ’ z + a , z + . .  . at z<< 1, 

at z >> 1. ( 6 )  

Perturbation calculation at large g involves the reduced variable Nepg .  The SAW-to- 
TSAW crossover can be analysed following the same line of argument. This point will 
not be discussed further here. In figure 3, we have shown the universal plot for RN, 
which exhibits clearly the Rw-to-mAw crossover, according to ( 5 ) .  

~ z 2 ( 2 v - l )  

-81 
-6 -4 -2  0 2 4 6 

In I gN 1 

Fqure 3. Universal plot of RN against N, with scaling variables: gRN against gN”’, 
showing the RW-to-TSAW crossover. Broken lines, of slopes 1 and $ respectively, are 
shownforcomparison. m,g = 1 ;  A, g = 3; 1. g =0.1;0,  g =0.03; *, g = 0.01,0.003,0.001. 

For g < 0, the scaling variable z = gN1” implies, in a saturation regime, the result 

R & ( g )  2 ( - g ) - 2 u ’  (7) 
with v’ = 1. The corresponding plot is shown in figure 4. 

The same scaling analysis leads to the prediction s’ = 1 for the exponent of S , , ( g ) ,  
and similar expressions at g > 0, with s = v. In one dimension S ,  and RN have the 
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Ln ( -1lg) 

Figure 4. Power law behaviour of the limiting value R?(g)=lim,,, R i ( g )  as function 
of g (negative) close to g = 0. The broken line has the slope 2, predicted hy the scaling 
analysis. 

same exponents. The meaning of this is evident from the consideration that the RMS 

excursion of the walker is proportional to N ” ,  and in one dimension, while sites inside 
this distance will almost always have been visited, sites outside it will not. This argument 
is known to be exact for g = 0. Our results support its validity for all g.  

Using the numerical results, we have checked that the expression of 9 ( z )  in powers 
of z gives the correct slope of RL / N  at z = 0; al = 2r1”/3 = 1.1816 . . . . The singular 
behaviour at g < O  leads to the following conclusion. The expansion of R L / N  in 
powers of z has a radius of convergence near IzI - N-1’2,  gives the correct slope a,  
at z =0, but such a function cannot be generally used for finite z. The perturbation 
series for R $ / N  is not convergent except at z = 0. It is doubtful that the first few 
terms of this series can provide any insight into the asymptotic behaviour of RN at 
finite z. This suggests strongly that the perturbational approach is fruitless. 

In summary, we have presented in this letter a brief report on a Monte Carlo study 
for the TSAW in one dimension. Our results provide strong support for the value v = 3 
of the RMS displacement exponent RN - N “ ,  for all values (0 < g < CD) of the repulsion 
parameter. A similar behaviour was found also for the range SN - N s  of the TSAW. 
For negative g (self-attracting walks), we have shown a saturation effect, corresponding 
to a self-trapping of the walker, with R,(g)  - ( - g ) - ’  and S , ( g )  - ( - g ) - ’  at g < O .  A 
simple scaling analysis of the TSAW statistics was outlined, providing in particular a 
simple explanation of the singular behaviour at g s 0. In this respect, it is of interest 
to extend this study ( g  S 0) to d = 2. Extension to fractal structures is now in progress 
(Angles d’Auriac and Rammal 1983). Comparison with other models of correlated 
RW and more detailed results will be reported in a forthcoming paper (Rammal er ul 
1983). 

We are grateful to Dr G Toulouse and Professor L Peliti for stimulating discussions. 
After this work was completed, we learned that J Bernasconi and L Pietronero (1983 
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preprint) have also performed similar calculations for Y at g > 0. Their results are in 
very good agreement with ours. We thank Professor L Peliti for bringing this work 
to our attention. 
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